Electrical Load Forecasting using Adaptive Neuro-Fuzzy Inference System

نویسندگان

  • Gayatri Dwi Santika
  • Wayan Firdaus Mahmudy
  • Agus Naba
چکیده

Electrical load forecasting is well-known as one of the most important challenges in the management of electrical supply and demand and has been studied extensively. Electrical load forecasting is conducted at different time scales from short-term, medium-term and long-term load forecasting. Adaptive neuro-fuzzy inference system is a model that combines fuzzy logic and adaptive neuro system and is implemented in time-series forecasting. First, ANFIS structure is decided using subtractive categorization; next, ANFIS premise and consistent parameters are identified using hybrid algorithm; finally, some factors affecting future daily electrical load such as weather and population become inputs of ANFIS to forecast daily electrical load on the following day. The membership function used is Gbell membership function. The forecasting result shows that the forecasting model is considered valid with an RMSE score of 0,0298.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

Forecasting Energy Price and Consumption for Iranian Industrial Sectors Using ANN and ANFIS

Forecasting energy price and consumption is essential in making effective managerial decisions and plans. While there are many sophisticated mathematical methods developed so far to forecast, some nature-based intelligent algorithms with desired characteristics have been developed recently. The main objective of this research is short term forecasting of energy price and consumption in Iranian ...

متن کامل

Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System

Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017